APPENDIX

D

INTEL JA-32 INSTRUCTION SET

769

770

APPENDIX D + INTEL JA-32 INSTRUCTION SET

This appendix contains a summary of the Intel 1A-32 instruction set which was intro-
duced in Part III of Chapter 3. This instruction set is very extensive. We only describe
a small part of it. about 50 instructions, including all of those used in Chapter 3. Some
general aspects of other instruction types are also covered.

The [A-32 register structure is shown in Figures 3.37 and 3.38 and described in
Section 3.16.1. The general format of an instruction is shown in Figure 3.41. Memory
is byte addressable and addresses are 32 bits long. There are two operand sizes: double-
word (32 bits) and byte (8 bits). Word operands (16 bits) were used in earlier 16-bit
Intel processors. IA-32 processors can operate in a 16-bit mode to execute machine
programs prepared for the earlier 16-bit processors.

D.1 INSTRUCTION ENCODING

Figure D.la shows the general format for encoding IA-32 instructions. The OP code is
either one or two bytes long. For some instructions. the OP code is extended into the
3-bit Reg/OPcode field of the ModR/M byte shown in Figure D.1b. Since the encoding

lto4 lor2 1 1 lord for4d

bytes bytes byte byte bytes bytes

Prefix OP code ModR/M| SIB Displacement Immediate
\.—v—./

Addressing mode

(a) General format

Mod Reg/OPcode R/M

(b) ModR/M byte

7 6 5 4 3 2 | 0
Scale Index Base
(c) SIB byte

Figure D.1 1A-32 instruction format.

D.1 INSTRUCTION ENCODING

of the OP codes is very irregular, we will not give any details. Prefix bytes, which are
not needed in encoding most of the common instructions discussed here, are discussed
in Section D.3.

The length of an instruction can range from one byte (an OP code) to 11 or more
bytes when both a 4-byte displacement and a 4-byte immediate operand are specified,
along with two addressing mode bytes and the OP code. For example, the Increment
(INC) and Decrement (DEC) instructions on a register operand require only a I-byte OP
code that includes a 3-bit field to name the register. As an example of a long instruction,
11 bytes are needed to encode the instruction

MOV DWORD PTR [EBP + ESI*4 + DISP],10

as discussed in Section 3.17.1. Other instruction examples are also discussed in that
section.

The operand data size (8 bits or 32 bits) is indicated in the OP code. The OP code
also indicates whether or not one of the operands is an immediate value contained in
the Jast field of the instruction.

At least one of the operands in a two-operand instruction must be in a register. It is
named in the Reg/OPcode field of the ModR/M byte. The 3-bit codes for the registers
are shown in Table D. 1. If the other operand is in a register, it is named in the R/M field
of the same byte. If the other operand is not in a register, it may be an immediate value
or it may be the contents of a memory location. The address of a memory operand is
specified by the two addressing mode bytes and the displacement field as described in
the next section. The specification of which operand is the source in the encoding of a
two-operand instruction is determined by a bit in the OP code, called the direction bit,
as described in Section 3.17.1.

Table D.1 Register field encoding in
IA-32 instructions

Reg/Base/Index* | Register

field

000 EAX
001 ECX
010 EDX
011 EBX
100 ESP
101 EBP
110 ESI

111 EDI

| “ESP (100) cannot be used as an index register.

771

772

APPENDIX D + INTEL IA-32 INSTRUCTION SET

D.1.1 ADDRESSING MODES

Table 3.3 lists the IA-32 addressing modes, the assembler syntax used to specify them.
and the way that the effective address EA is generated. We have already discussed the
Immediate mode and the use of the Reg/OPcode field of the ModR/M byte to specify
a register as the location of one operand. The other operand is specified as shown in
Table D.2. The Register indirect. Base with displacement. and Register addressing

Table D.2 |A-32 addressing modes selected by the ModR/M and SIB bytes

ModR/M byte| Addressing mode

Mod| R/M
field | field

8)7 b(; 1)2 ()1 b()

00 Reg Register indirect
EA = [Reg]

01 Reg Base with 8-bit displacement
EA = [Reg] + Disp8

10 Reg Base with 32-bit displacement
EA = [Reg] + Disp32

11 Reg Register
EA = Reg

Exceptions

00 101 Direct
EA = Disp32

00 100 Base with index (uses SIB byvte)
EA = [Base] + [Index] x Scale

When Base = EBP the addressing mode is:

Index with 32-bit displacement
EA = [Index] x Scale + Disp32

01 100 Base with index and 8-bit displacement (uses SIB byte)
EA = [Basc] + [Index] x Scale + Disp8

10 100 Base with index and 32-bit displacement (uses SIB byte)
EA = [Base] + [Index] x Scale + Disp32

D.2 BASIC INSTRUCTIONS 773

Table D.3 Scale field
encoding in

IA-32 SIB byte

Scale field | Scale

00
01
10
11

modes are determined by the 2-bit Mod field of the ModR/M byte as shown in the first
four rows of the table. The 3-bit R/M field normally specifies the register (Reg) involved
in these modes. Exceptions to this are used to generate the addressing modes listed in
the remainder of the table. All of these modes use the SIB byte. shown in Figure D. ¢,
except for the Direct mode. The SIB byte encodes the base and index registers as
shown in Table D.1. The scale factors of 1. 2. 4. and 8. are encoded as shown in
Table D.3.

As noted in Table 3.3. the ESP register (encoding 100) cannot be used as an index
register. This is not actually a programming restriction because ESP is used as the
processor stack pointer. When the bit pattern 100 is placed in the Index field of the SIB
byte, no scaled index 1s used. but the other components of the addressing mode operate
normally in generating the effective address of the operand. This has the following
useful effect. From Table D.2, it would appear that ESP cannot be used in the first three
modes listed because the ESP encoding (100) is used to signify exceptions that generate
the last three modes in the table. But if 100 is placed in both the Base and Index fields
of the SIB byte. the addressing modes generated are effectively the first three in the
table with ESP as the base register because no index is used.

Note that the base register encoding of 101 (EBP) is used as an exception in the Base
with index addressing mode in order to generate the Index with 32-bit displacement
mode. The EBP register can still be used eftectively as the base register in a Base
with index mode by using it in the Base with index and displacement mode with a
displacement value of zero.

D.2 BASIC INSTRUCTIONS

A set of commonly used IA-32 instructions is listed alphabetically in Table D.4. All of
the instructions used in Chapter 3 are included except for the jump instructions and the
specialized string instructions with the repeat option that were used in Section 3.21.3
for /0 block transfers. The conditional and unconditional jump instructions are de-
scribed in the next two subsections. String instructions are described in Section D.4.
In Table D.4, the OP-code mnemonic and name of the instruction are shown in the

(Continted on page 782.)

774 APPENDIX D -+ INTEL IA-32 INSTRUCTION SET

Table D.4 |A-32 instructions

Mnemonic | Size | Operands Operation CC flags
(Name) performed affected
dst src S|Z| O
ADC BD | reg reg dst — [dst] + [sre] + [CF] | x | x | x
(Add with reg mem
carry) mem reg
reg imm

mem imm

ADD BD | reg reg dst «— [dst] + [src] X | X |x
(Add) reg mem

mem reg

reg imm

mem imm

AND BD | reg reg dst — [dst] A [sr¢] x| x{0
(Logical reg mern
AND) nem reg

reg imm

mem imm

BT D reg reg bit# = [srcl;
(Bit test) reg imm8 | CF « bit# of [dst]
mem reg

mem imm8

BTC D reg reg bit# = [src;

(Bit test and reg imm8 | CF « bit# of [dst];

complement) mem reg complement bit#
mem imm8 of [dst]

BTR D reg reg bit# = [src];

(Bit test reg imm8 | CF « bit# of [dst]:

and reset) mem reg clear bit# of [dst] to 0

mem imm§

D.2 BASIC INSTRUCTIONS

Mnemonic Size | Operands Operation CC flags
(Name) performed affected
dst src S|1Z|0|C
BTS D reg reg bit# = [src; X
(Bit test reg imm8 | CF — bit# of [dst];
and set) mem reg set bit# of [dst] to 1
mem immd
CALL D reg ESP — [ESP] — 4;
(Subroutine mem [ESP] « [EIP];
call) EIP «— EA of dst
CLC CF <0 0
(Clear carry)
CLI IF —0
(Clear int. flag)
CMC CF « [CF] X
(Compl. carry)
CMP BD | reg reg [dst] — [src] x| x| x|x
(Compare) reg men
mem reg
reg imm
memnm immn
DEC B.D | reg dst — [dst] — 1 x| x| x
(Decrement) mem
DIV B,D reg for B: Vo O O B4
(Unsigned mem [AL}/[srcl;
divide) AL < quotient:
AH « remainder
for D:
[EAX]/[src];
EAX < quotient;
EDX « remainder

(Continued)

775

APPENDIX D

o INTEL IA-32 INSTRUCTION SET

Mnemonic Size | Operands Operation CC flags
(Name) performed affected
dst sre S{Z2,|0
HLT Halts execution uuntil
(Halt) reset or external
interrupt oceurs
IDIV B.D reg for B: T
(Signed e [AL]/[src]:
divide) AL «— guotient:
AH «— remainder
for D:
[EAX]/[src]:
EAX « quotient:
EDX « remainder
IMUL B.D reg (double-length product) | 7 | 7 | x
(Signed mem | for B:
multiplication) AX — [AL] x [src]
for D:
EDX.EAX — [EAX]
x [src]
D reg reg (single-length product) | 7 | 7 | x
reg mem | reg < [reg] x [src]
IN B.D | dst = AL AL or EAX « [src]
(Isolated or EAX
input) sre = imm§
or [DX]
INC B.D | reg dst « [dst] + 1 x| x| x
(Increment) mem
INT D imm8 | Push EFLAGS:
(Software Push EIP:
interrupt) EIP — address
(determined by imm3)

D.2 BASIC INSTRUCTIONS

Mnemonic Size | Operands Operation CC flags
(Name) performed affected

dst src S|Z{0 |C
IRET D Pop EIP: X Ix | x |x
{Return from Pop EFLAGS
interrupt)
LEA D reg mem | reg «— EA of src
(Load effective
address)
LOOP D target ECX « [ECX] - 1:
(Loop) If ([ECX] #0)

EIP « target
LOOPE D target ECX « [ECX] — 1:
(Loop on If ([ECX]#0
equal/zero) NZ]=1)
EIP « target

LOOPNE D target ECX « [ECX] — 1
(Loop on If ([ECX]#0
not equal/ ANZ]#1)
not zero) EIP « target
MOV BD |reg reg | dst « [src]
(Move) reg mem

mem reg

reg imm

mem imm
MOVSX B reg reg reg «— sign extend [src]
(Sign extend reg mem

byte into
register)

(Continued)

777

APPENDIX D

o INTEL JA-32 INSTRUCTION SET

Mnemonic Size | Operands Operation CC flags
(Name) performed affected
dst src S{Z0;C
MOVZX B reg reg reg « zero extend [src]
(Zero extend reg mem
byte into
register)
MUL B.D reg (double-length product) | 7 | 7 | x | x
(Unsigned mem | for B:
multiplication) AX « [AL] x [src]
for D:
EDX,EAX — [EAX]
X [sre]
NEG B.D | reg dst «— 2’s-complement, x| x Ix |x
(Negate) mein [dst]
NOP alias for:
(No operation) XCHG EAXEAX
NOT BD | reg dst — [dst]
(Logical mem
complement)
OR B,D |reg reg | dst« [dst] V [src] x |x {0 {0
(Logical OR) reg mem
mem reg
reg imm
mem imm
ouT B.D | dst = imm8 | dst «— [AL] or [EAX]
(Isolated or [DX]
output) src = AL
or EAX

D.2

BASIC INSTRUCTIONS

Mnemonic Size | Operands Operation CC flags
(Name) performed affected

dst src S|Z|]O0;C
POP D reg dst — [[ESP]];
(Pop off mern ESP — [ESP] + 4
stack)
POPAD D Pop eight doublewords
(Pop off off stack into
stack into EDI, ESI, EBP, discard,
all registers EBX, EDX, ECX, EAX;
except ESP) ESP — [ESP] + 32
PUSH D reg ESP « [ESP] ~ 4;
{(Push onto mem | [ESP] « [src]
stack) imm
PUSHAD D Push contents of
(Push all EAX, ECX, EDX, EBX,
registers ESP, EBP, ESI, EDI
onto stack) onto stack;

ESP — [ESP] — 32

RCL B,D | reg imm8 | See Figure 2.32b; ?7 Ix
(Rotate left reg CL src operand is
with C flag) mem imm& | rotation count

mem CL
RCR B.D | reg imm8 | See Figure 2.324, 7 | x
(Rotate right reg CL src operand is
with C flag) mem imm8 | rotation count

mem CL
RET EIP — [[ESP][;
(Return from ESP « [ESP] + 4
subroutine)

(Continued)

779

780

APPENDIX D -

INTEL JA-32 INSTRUCTION SET

Mnemonic Size | Operands Operation CC flags
(Name) performed affected
dst src S{Z| O
ROL B.D | reg imm8 | See Figure 2.32a: ?
(Rotate left) reg CL src operand is
mem imm& | rotation count
mem CL
ROR B.D | reg imm8 | See Figure 2.32¢; ?
(Rotate right) reg CL sre operand is
mem immn& | rotation count
mem CL
SAL B,D | reg imm8 | See Figure 2.30a: x| x |7
(Shift reg CL sre operand is
arithmetic mem imm8 | shift count
left) mem CL
same as SHL
SAR BD | reg imm8 | See Figure 2.30¢; x| x {7
(Shift reg CL sre operand is
arithmetic mem imm8 | shift count
right) mem CL
SBB B.D | reg reg dst « [dst] — [sre] | x | x | x
(Subtract reg mem — [CF]
with borrow) mem reg
reg imm
mem imm
SHL B,D | reg imm8 | Sce Figure 2.30q; x|{x|?
(Shift reg CL src operand is
left) mem imm3 | shift count
same as SAL mem CL

BASIC INSTRUCTIONS

Mnemonic Size | Operands Operation CC flags
(Name) performed affected

dst src S|1Z|]0|C
SHR B.D | reg imm& | See Figure 2.30b; x{x |7 |x
(Shift reg CL src operand is
right) mem imm8 | shift count

mem CL
STC CF «~1 1
(Set carry
flag)
STI IF «— 1
(Set interrupt
flag)
SUB B,D | reg reg dst « [dst] — {src] | x | x | x | x
(Subtract) reg mem

mem reg

reg imm

mem imm
TEST B,D | reg reg [dst] A [src]; x|{x |0 |0
(Test) mem reg set flags based

reg imm | on result

mem imm
XCHG B,D |reg reg [reg] < [src]
(Exchange) reg mem
XOR B,D | reg reg dst « [dst] @ [src] | x | x |0 | O
(Exclusive reg mem
OR) mem reg

reg imm

mem imm

(Concluded)

782

APPENDIX D « INTEL IA-32 INSTRUCTION SET

first column. The second column indicates the operand size that can be used: B (byte)
or D (32-bit doubleword). The third column lists possible locations for the source and
destination operands, abbreviated as:

reg - one of the eight processor registers
mem - a memory location

imm — an 8- or 32-bit immediate operand
imm§ - an 8-bit immediate operand

The operation performed by the instruction is described in the fourth column. The last
column indicates how the condition code flags are affected by executing the instruction
using the following symbols:

X — affected

0 — set to 0

| - setto 1
“blank™ - not affected

? - unpredictable

D.2.1 CONDITIONAL JUMP INSTRUCTIONS

The conditional jump instructions are listed in Table D.5. As discussed in Section 3.19.1,
the target address is used directly in an assembly language program. The machine
instruction actually contains a signed number (an offset) that specifies the distance in
bytes to the target address relative to the updated contents of the Instruction Pointer
register. Two sizes of offset are used: 1 byte and 4 bytes. The assembler computes the
offset when converting an assembly language program to machine language.

D.2.2 UNCONDITIONAL JUMP INSTRUCTIONS

Section 3.19.2 describes the unconditional jump instruction JMP. As well as the relative
addressing mode used in conditional jumps, the general addressing modes can be used to
specify the target address. This provides more flexibility in implementing multiple-way
branching that arises in CASE statements used in high-level languages.

D.3 PREFIX BYTES

Instruction prefix bytes, shown in Figure D.1a, are divided into four groups. More than
one prefix byte can be used with an instruction. But, only one byte from each group can
be used. The first group includes repear byte codes for indicating that the instruction
operation is to be repeated some number of times. Instructions that allow this option are
called string instructions. They will be described in Section D.4. We saw an example of

D.4 OTHER INSTRUCTIONS 783

Table D.5 1A-32 conditional jump instructions

Mnemonic Condition Condition code
name test

JS Sign (negative) SF =1

JNS No sign (positive or zero) SF =0

JE/JZ Equal/Zero ZF =1

JNE/JINZ Not equal/Not zero ZF =0

JO Overflow OF =1

JNO No overflow OF =0

JC/IB Carry/Unsigned below CF =1

JNC/JAE No carry/Unsigned above or equal CF =0

JA Unsigned above CFVZF =0

JBE Unsigned below or equal CFVZF =1

JGE Signed greater than or equal SF & OF =0

JL Signed less than SF&OF =1

JG Signed greater than ZF Vv (SFpOF)=0

JLE Signed less than or equal ZF Vv (SF & OF) =1

repetition of string instruction operations in the block transfer of doublewords between
an /0 device and memory in Section 3.21.3. The streaming SIMD extension (SSE)
instructions. described in Sections 3.23.3, 11.3.6, and 11.3.7, are also indicated by a
byte code in this group.

Two of the groups consist of only one byte code each. These codes are used to over-
ride the default operand size or the default address size. as described in Section D.5.

The fourth group of prefix bytes is used to override the default selection of the
segment registers used in generating memory addresses. A general description of the
use of segment registers was given in Section 11.3.1.

D.4 OTHER INSTRUCTIONS

The full 1A-32 instruction set contains many more instructions than those listed in
Table D.4. Four of the instruction types not included in the table are briefly described
here.

D.4.1 STRING INSTRUCTIONS

Special instructions are provided to perform common repetitive operations efficiently
on data items contained in consecutive memory locations. These data structures are
called strings and the instructions are called string instructions. The individual items
of a string can be bytes or 32-bit doublewords. String instructions can be used, for

784

APPENDIX D ¢ INTEL IA-32 INSTRUCTION SET

example, to move a string from one area of memory to another area or to compare two
strings to determine if they are equal.

We will use the string move instruction to illustrate how string instructions are
executed. The OP codes MOVSB and MOVSD are used for byte and doubleword
moves. These instructions differ from the regular Move instruction in that they consist
of only the OP code and do not have explicit operands. The address of the source operand
is assumed to be in register ESI, and the destination operand address is assumed to be
in EDI. The execution of MOVSB consists of moving a byte from the source location to
the destination location and then incrementing the ESI and EDI pointer registers. This
instruction can be placed inside a loop to move all bytes of the string. Alternatively.
a repeat prefix can be used with the instruction to move the complete string. In this
case, in addition to initializing the ESI and EDI registers, the ECX register must be
initialized to the length of the string. It is decremented after each byte is transferred.
Execution of the instruction

REP MOVSB

moves a complete string of bytes. The instruction is fetched once and its operation is
repeated until the count contents of the ECX register have been decremented to zero.

String instructions with the repeat option are provided for performance reasons.
The same task could be programmed by using the instruction

MOV BYTE PTR [EDI],|ESI}

inside a loop in which the pointer registers are explicitly incremented and the count
register ECX is decremented until it contains zero. But that method would take much
longer to execute.

D.4.2 FLOATING-POINT, MMX, AND SSE INSTRUCTIONS

There is a full range of operations on floating-point data in the IEEE format (see
Chapter 6) provided by IA-32 instructions. The eight floating-point registers shown in
Figure 3.37 are used to hold these data. In addition to add, subtract, multiply, and divide
operations, trigonometric functions are also provided.

The MMX (multimedia extension) instructions, described in Section 3.23.2, are
used to perform simple arithmetic and logic operations in parallel on short integers
packed into 64-bit quadwords located either in the floating-point registers or in memory.
These operations are required in graphics and signal-processing applications.

The SSE (streaming SIMD extension) instructions, first introduced in the Pen-
tium III processor and enhanced in the Pentium 4 (see Sections 11.3.6 and 11.3.7)
perform parallel arithmetic operations on floating-point numbers packed into a set of
eight 128-bit processor registers. These registers are separate from the general-purpose
and floating-point registers. The individual data items can be 32-bit or 64-bit floating-
point numbers. The SSE instructions are useful for vector and matrix calculations in
scientific applications. In the Pentium 4 enhancements. the operands can also be 64-bit
integers. These data types are used in encryption and decryption operations in secure
data applications.

P.6 PROGRAMMING EXPERIMENTS

D.5 SIXTEEN-BIT OPERATION

In Sections 3.16.1 and 11.3.2, it was noted that an 1A-32 processor can execute programs
in amode that uses 16-bit addresses and data operands, as used in earlier Intel processors,
as well as in the mode that uses 32-bit addresses and data operands, which is the mode
that we have described in this book. In either of these two modes, byte operands can also
be manipulated. When operating in the 32-bit mode, a bit in the OP code determines
whether an operand is a byte or a 32-bit doubleword; in the 16-bit mode. the same bit
determines whether an operand is a byte or a 16-bit word. The default mode of operation
is set by a bit in the segment descriptors. These descriptors were briefly described in
Section 11.3.2.

In our discussions, we have tacitly assumed that the processor is operating in the
32-bit default mode. However, on an instruction-by-instruction basis, the default mode
can be overridden for the duration of one instruction by using a prefix byte as the first
byte of an instruction as shown in Figure D.1. The default operand size or the default
address size, or both, can be overridden by different prefix bytes.

D.6 PROGRAMMING EXPERIMENTS

A convenient way to experiment with assembly language programming is to use the
in-line assembly language facility provided with a high-level language. An example of
this 1s given in Chapter 9 where I/O routines are programmed in assembly language
inside a C program. Here, we outline how to use the in-line facility in C/C++. The
Microsoft Corporation provides a compiler for this language that runs under their
Windows operating systems on personal computers built with Intel [A-32 processors.

Figure D.2 shows how the addition loop program in Figure 3.40a can be incorpo-
rated into a C/C++ program. The assembly language instruction code is encapsulated
in the construct

asm{ ...}

The data declarations and initialization operations are done in C/C++ at the beginning
of the program, and the result of executing the assembly language program, which is
the value in memory location SUM, is printed by the printf statement at the end of the
program.

The operations of naming and opening a file for the source program and entering.
compiling, and executing it, are not given because they vary depending on the particular
software environment used.

A hexadecimal listing of the machine instructions generated for an assembly lan-
guage program, such as the one in Figure D.2, can be produced by the compiler. It
is instructive to study the listing to see examples of the binary encoding of IA-32 in-
structions in the format shown in Figure D.1. The listing for the four-instruction loop
is shown in Figure D.3. Hexadecimal representations of the bytes used to encode each
instruction are shown to the left of the assembly instructions in Figure D.3a. Parts b
and ¢ of the figure show the binary encoding details for the ADD and JG instructions.

785

786

APPENDIX D + INTEL JA-32 INSTRUCTION SET
include <stdio.h>

void main(void)

{

long NUM1[5];

long SUM;

long N;

NUM1[0] = 17;

NUMI[1] = 3:

NUM1[2] = —51;

NUM1[3] = 242;

NUML[4] = 113

SUM = 0:

N =5:

asm {
LEA EBX,NUM1
MOV ECX,N
MOV EAX.0
MOV EDIO

STARTADD: ADD EAX.,[EBX + EDI*{4]
INC EDI
DEC ECX
JG STARTADD
MOV SUM.,EAX

}

printf (“The sum of the list values is %1d \n”. SUM);

}

Figure D.2 |A-32 Program in Figure 3.40a encapsulated in a
C/C++ program.

First, consider the ADD instruction. The two bits set to 1 at the right end of the
OP code have the following meaning: The last 1 signifies that the operand size is
32 bits. The second last 1 signifies that the source operand is the operand located in the
memory. Using Tuble D.2, we observe that the Mod field (00) and the R/M field (100)
of the ModR/M byte specity the Base with index addressing mode for the memory
operand, and the Reg/OPcode field (000) specifies the EAX register as the destination.
The Base field (011) of the SIB byte specifies EBX as the base register and the Index
field (111) specifies EDI as the index register. The Scale field (10) selects 4 as the scale
factor.

D.6 PROGRAMMING EXPERIMENTS

Machine instructions | Assembly language instructions
(hexadecimal)

03 04 BB STARTADD: ADD EAX.[EBX + EDI*4]
47 INC EDI

49 DEC ECX

F F9 JG STARTADD

(a) Loop body encoding

OP code ModR /M byte | SIB byte

03 04 BB

00000011 00 000 100 10 111 011

ADD (see Table D.2) (see Figure D.1¢)
(doubleword)

(b) ADD instruction

OP code Offset

F F9
01111111 111111001
JG -7

(short offset)
(c) JG instruction
Figure D.3 Encoding of the loop body in Figure D.2.
The JG instruction encoding in Figure D.3¢ is interpreted as follows. The first four

bits of the OP code (0111) specify a conditional jump with a |-byte offset. and the
last four bits (1111) specify the “greater than™ condition. The offset byte contains the

2’s-complement representation for —7. This is the distance in bytes from the address of

the instruction following the JG instruction back to the address of the ADD instruction
at the beginning of the loop.

Use of the Processor Stack

The compiler uses registers ESP and EBP as the processor stack pointer and the
tframe pointer, respectively. Therefore, in-line assembly language programs cannot use
these registers for other purposes. Also, the compiler allocates memory variables, such

787

788

APPENDIX D + INTEL IA-32 INSTRUCTION SET

as NUMI, SUM, and N, declared inside the “main” procedure, as local variables on the
stack. When they are referenced using the Direct addressing mode in assembly language,
as in the first two instructions in the program in Figure D.2, the compiler generates the
Base plus displacement mode to access them. The frame pointer EBP is used as the base
register and the displacements are negative offsets into the stack, which grows toward
lower addresses. If these variables are declared outside the “main” procedure, they are
allocated as global variables and they are accessed by the Direct addressing mode.

